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Abstract -"‘-S‘-
The property of independent increments is one of the most important for defining both the homo- K
geneous and nonhomogeneous Poisson process. :::3“ ,
ROy

In this paper we give two ways to relax this requirement and characterize the nonhomogeneous C‘;::*-'
Poisson process by some moment conditons. .;:‘:3
One result is that a counting process {N(t),t 2 0} with finite moments of all orders is a nonhomo- ;!*:' A

geneous Poisson process with mean functions m(t) = EN(t) if and only if for any t;, i = 1,...k

Onet w3
Yty

cum (N(tp),....N(t)) = lmiri EN(t)

<i<

£

PRI

where cum (') is the joint multivariate cumulant.

A second result is that if increments on any interval are Poisson distributed and an exchangeable ﬁiy}'
condition is assumed then the process is nonhomogeneous Poisson. This extends Renyi’s (1967) RN
KN

result. UERLN )

oY

‘-‘.‘\“ 2

Key Words: Nonhomogeneous Poisson Process, independent increments, characterization problem, DR
joint cumulant, exchangeable. ._'-:.,':.')‘

NS

£

_\;S)‘-, .
5

hY

M g v":

! Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260.

.
=

ol e |
’J y

)
~I

oy
BT

L/

2 Supported by Grant No. AFOSR-84-0113 and ONR Contract N00014-84-K-0084.

pL A Ny
£

-
-_\‘.*o

e A A AR R " I T I R S T I e e T T e S N A N R N N L TSRS
R St '0 b o r n o Ly el a T N Ly VRN NG N “. J." Zp e LK)



AN

Ny o T P T N TR L WU R U U Uy RS VSO IO O v ol . ¢

1. Introduction

R

Poisson processes play an important role in many fields. The Poisson process is one of the sim-
plest counting processes and is a building block for many other processes, especially for general

independent increment processes.

Many definitions have been given for a counting processes to be a Poisson process and many

papers have appeared dealing with characterizations for the Poisson distribution and the Poisson pro-

Cess.

Among the qualitative conditions defining a Poisson process, independent increments is one of the
most important conditions. In this paper we attempt to use other conditions in place of independent
increments. This provides a somewhat different viewpoint for examining Poisson processes. In addi-
tion, new characterizations for the nonhomogeneous Poisson process via moment conditions are

obtained which might be easier to utilize in practice. ~
For clarity we give a standard definition first.

Definition 1. A counting process {N(t), t 2 0} is said to be a nonhomogeneous Poisson process with

parameter function m(t) if

(i) P{N(0O)=0} =1,
(i1) the process has independent increments,

(iii) for 0 € s < t, N(t)-N(s) is Poisson distributed

with mean m(t)-m(s), i.e.

_ k
PIN@-N(s)=k} = LEBEE e —(m(v-m(sy)}

for k=0,1,2,... where m(t) is a nonnegative nondecreasing function of t.
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For the purpose of exposition we assume m(t) is continuous. Renyi (1967) made an essential

improvement in relaxing the condition of independent increments. This is given in the Theorem 1

below.

Let R* = {t, t 2 0}. B be the Borel set of R, y= {finite union of disjoint finite intervals (a,b]
on R*}, and I=(s,t] be an interval on R*. Let §(E) be an additive stochastic set function defined for
Eeﬂwhich counts the number of events of a counting process N(t) falling in E. In other words, ﬁ(E)
represents the total increments of the process N(t) on intervals in E. It follows that (I) = N(t)-N(s)

' is the increment on (s,t]. Let A(E) be a measure with no atoms in E £/, such that A(E) < o for

Eef and A(I) = m(t)-m(s) where I = (s,t]. Here m(t) is a nonnegative nondecreasing function of t :

which is assumed to be continuous.

Theorem 1. Let {N(t), t 2 0} be a counting process with P{N(0)=0}=1. If for Ee’# E(E) has a

Poisson distribution with mean vatue A(E), then N(t) is a Poisson process with mean m(t).

Proof.  Renyi (1967). X

If it is assumed only that &(I) has a Poisson distribution for any interval I in R*, Shepp (see Gold-
man, 1968) has constructed a counter-example to show that the process need not be Poisson. Further-
more, Oakes (1972) has provided a construction of a counting process such that even if for fixed k the
counts &(I;) in any k contiguous interval I; = (t;_;,t;] are independently Poisson distributed with mean ~

t—t,_1. N(t) need not be a Poisson process. This process is called a k-fold quasi-Poisson process.

An interesting question is to determine additional conditions needed to ensure that a process is )
nonhomogeneous Poisson with mean m(t) besides the condition that E(I) is distributed as Poisson with
mean A(I). In Section 2, we introduce an exchangeable condition which was suggested by Dr. Z. D.

Bai (personal communication) to replace the independence condition. !

It is well known that independence implies uncorrelatedness, but the converse is not true in gen-

eral. In Section 3, we use the idea of joint cumulants developed in Block and Fang (1985) to give a
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characterization for nonhomogeneous Poisson processes via moment conditions under which uncorrelat-

edness between increments implies independent increments. It naturally follows that if E(I) is Poisson

distributed for any interval then the counting process is nonhomogeneous Poisson.
Both arguments above relax the common condition of independent increments for a process to be

Poisson.

2. An exchangeability condition

In this section we prove that a counting process is Poisson under an exchangeability condition.

Here we use exhangeability with respect to a finite number of rv’s.

Consider a counting process N(t) on R*. Let I be the interval (a,b], |I| = b—a (the Lebesque

measure for interval I). A(I)={N(b)-N(a)=0} (the event that there is no occurrence of the process in I),

and let 14 be the indicator function of A(I).

First we prove a lemma to show huw the exchangeable condition works, then by using this lemma

we cbtain a new set of conditions for a Poisson process.
Lemma I. If for any interval I = (a,b] on R*

P{N(b)-N(a) = 0} = el )

and for any contiguous intervals I, = (t_;t]i=1,..k such that |I;| =8,8>0, the rv’s

1oy, i=1,..k are exchangeable, then 1,y i=1,... k are independent.

M
Proof. From A(L) = {N(t;)-N(t;_;) = 0} we know that if J = I; . in€ {l..k} m=1,..M

m=1

M M
then A(J) = M~ A(Ij) and 15y = [T 1aq, ) It is easy to see that the 1, are identically distri-
m=1 m=] "

buted Bernoulli rv’s with parameter p, where p = e
Similarly, since the 1A(||)'s are exchangeable we have

P{iagy= 1} =Pl = L. m=1..M}

o m e g g et ettt O R S :
S G R T M S Sy .
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=P{lagy=1,i=1,.,M} '
4
&
= P{N(ty)-N(t,) = 0} ;
;
= Ml _ o Mbrt) _ M _ oM '
i.e., 15(s) is Bernoulli with parameter pM. :
ht
Now, for fie {0,1},i=1,..k. Let By ={i|f,=0}, B, ={ilf;=1}. By B; ={1,...k}. 3
Card By = Mg, Card B, = M, and Mg+ M; = k. Denote the complement of A(l) by AS(I). By -
,
~
exchangeability we have ;
o
P{laqy=f;i= 1.k} ]
=P {lA(li) = O,iSBO; lA(Ii) =1, iEBl}
=P {l =0,i=1,.My y=1,1= + 1,.., X
{lagy =0, i Mg 1oy = 1, 1=My k} -3
N
=P{lpqy=1i=1.Mp lagy=1,i=Mg+1,.K} A

- ’ - o & - -
R A S S A S S
S A e o

M, k :
=EQTl 1aqy TI 1law X
i=1

i=Mp+1

=E [1-1s ) 1 & =
Al .

HA(I‘) i=({2‘l (l) :

%

MO 1 k 4

=E | - -E Z (—1)]— S.l n lA([,) (3) N
m A(ll) j: i=Mp+1 ™

1=My el \

:
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Fy where Sj = Y ' 1 Ay Ay Ay Since the 14(1y’s are exchangeable
“ 1<€ij<<ijsM, 1

k
i=My+1
k

" = pX E1l IT 1ag

j
. 1<i) <<ijS M, r\l Al) j=Mp+1
o=

‘-(-’c;-

-

- A ~MALL Al . ) MAd
) L omiem, A0 OTOAL) A, )= OAGY

= ¥ pM= [ 1\;10 ]p" pe @

- 1<i <"'<ij < Mo

N It follows from (3) and (4) that

D
- p{lA(lJ = fi’ i= ,...,k}

K
# Mo M

k-M j~ 0 i k-M
" =p °—E(-1>"[ ~]P‘p °
! = J

)
= M Mo _ 5
" =p T (1-p)7 =T P{laqy =1
i=1

L)
) We now state the main result of this section. Here the usual condition of independent increments
‘ is replaced by an exchangeability condition.
;: Theorem 2. Let {N(t) t 2 0} be a counting process. If the conditions i) - iii) below hold, the
3 {N(t), t 2 0} is a homogeneous Poisson process with mean function E{N(1)} = At
2 Al
! i) For any interval I = (a,b] P{N(b)-N(a) = 0} = eI,
o
)

Ly ‘-'.'.Il.d‘
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ii) P{N(b) - N(a) 22} = o (A{I|) as Il — O uniformly in I

iii) For any finite number of contiguous intervals I; = (t;_;, t;] i = 1,..k such that |I;| =, the rv’s

1A(lg 1 = 1,....k are exchangeable.

Proof. By the proof of Theorem 1 and Remark 1 in Renyi (1967) we need only prove that for any
disjoint intervals Ej, i = l,..n l5gy i = 1,...n are independent. If this is proven, it then follows
from the argument there that {N(t) t 2 0} is a process with independent increments and consequently

{N(t) t 2 0} is Poisson process.

We can arrange the Ei’s according to their order in R*, relabeling them if necessary, and cut them
into small intervals of length € beginning at E;. For any € > 0 there exist a set of intervals
E{i=1,..,n such that E] E, |E/| =cg c; are integers and |E;| — |E;| <2e. Furthermore,
the E; can be chosen so that F; the space between Ei' and Ei'+1 are intervals of length |F;| = di,
where d; are also integers, i = 1,...,n~1 as shown in the diagram. Denote the interval of length €
which contains Fi_} ™ E; by A;| and the interval of length € which contains F; (™ E; by A;;. When

Fi_y M Ejor F; M E; is empty, define Aj; = empty. Thus |4;] <€ j=1.2,i=1,

E, E,

' —~]b,, 8y, “"““‘Jﬁ“... LﬁMan
— T I p gEme—— =
0 F—’\El Fi f E, T;‘j MFH

\

Diagram 1

By Lemma 1, all contiguous subintervals 19 of length € have the property that IA(,V)'S are indepen-

dent. It follows that IA(E;)'S are independent since E-,' EJ' = empty for i # j and lA(E.,) only depend

on lA((Q)IS such that 1, C E;. Since El' CcE cA)y Ei‘ (U Ap. we have  for any

. . e m o m - ~ S T RS ’.'- ST A T U PR Al e S R L 8 ST
S "J-F..J'flr’ﬁ ff\' l"-lfc" ﬂ\'\\\"..\""\' ‘n.n‘_‘ ' . - ."!‘"!' .-‘-\ \ .I
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1<i,...,ig€nm=1..n

E lA(E{‘) lA(F.(m)

2E lxg,) 7 lagy

m
2E I_! Laa, U By U i)
J:

m m
= E{IT lag) IT [aa, 1aey)

=1 ] ]:l

m m m
=B\ e (B IT tawp B IT 'awp

Thus )

L ~2Ame 0
E Hl Lagy e — 1 Elae)
= ]:

m

m
SETI lag) ~ I1 E lae)
1

j:] j:
N 4 2hme
- . —zAN!
SETT lae) ~ {I1 E tag) e
j:l ] =1 )
Since £ are arbitrary, we obtain that the 14k are independent from the fact that 14y, are indepen-

dent.

For the nonhomogeneous case, we have similar results.

L I P N . LA A R LI T T N T e N
*.-.,f.:’-. A SR A REATRER o .

e e e A S RN S A A AL PR PE PG BRI A s



» : ATy \-’~:.\-f~:’ " : -

.8 -

Theorem 3 Let {N(1) 1 20} be a counting process and let A be a nonatomic measure on B the cluss
of Borel sets on R™ Forantervals | = (a.b] < R™, let A(I) = m(b) — m(a), where m is a nonnegative
nondecreasing continuous function with m(0) = G, If the following conditions i)-ii1) are satisfied. then
Niti s i nonhomogeneous Poisson process with mean function E(N(1)) = m(t).

a1 Forany anterval 1 = tab), P{N(b) - Nta) = 0} = e Mb

e PINGh) = Nty =02 20 = o (aln as A1) = O uniformly in [

qi Forany tmite number  of contiguous  ntervals = (t_, ] 1=l k  such that

rly =006, > 001=10 Kk, the rv's 14, are exchangeable.

Proof We tollow the same line of argument as in Lemma 1 and Theorem 2. We need only replace

p= e "0 byvp=e ® divide the E,’s by sub mntervals [, with A(I;) = €, etc. We omit the details.

Remark | Without 1) and 1y 1in Theorem 3, the condition of independent increments and the

exchangeabdity of the 15, 1 1o of Theorem 3 are not equivalent.

Remark 2 Detimuion 1, the condition in Theorem 1 (i.e., §(E) is Poisson distributed) and the condi-

tions 1n Theorem 3 are equivalent. We show this in the following.
Defiminon 1 imples the conditions in Theorem 3, i.e., if N(t) has independent increments then
E Taqylag )= E Taq y E Tag ) = € ™ = E Ipq,1
Ad T haa ) = E oA AQ ) =€ = E Al T A

forany | <) 15 S K so that 14, are exhangeable.

m
The conditions 1in Theorem 1 imply the conditions in Theorem 3, 1e., let E = (y li). Ee . Then
=1

E lA(l,’;”’ lAu,m)

=SPEE) =0) =e HB = ™

-~ A l-‘ -- -. c. -. -‘v .. ~-' ..- .. ’q. -
N O O N N A SN

. - - A ., e —f“l' - " - - .‘
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N
b -9-
b =E lagylaq
L)
forany 1 i) im < k. Thus the 154y’s are exchangeable.
: By Theorem 3 we know that these three sets of conditions are equivalent. However, the condi-
By tions in Theorem 3 are somewhat easier to check.
‘l
3 Remark 3. Oakes (1972) mentioned the result that if £(I;), i = 1,...,m, where the [; are contiguous
D
intervals, are independently distributed as a Poisson distribution with mean |I;| for all m, then N(t)
)
must be Poisson. This fact also follows from Theorem 2. To see this choose special contiguous inter-
vals I, such that |I;| = 3 then €(I;) are i,i,d Poisson (8). Thus the 15()’s are exchangeable for any
I; i = 1,..,m of length § and contiguous. By Theorem 2 N(t) is a Poisson process.
)
Remark 4. Under condition iii) of Theoem 2 or Theorem 3 we can weaken conditions i) and ii). We
N
j need only assume they hold for the special class of intervals having the form I = (O t].

3. Characterization Via Moments

We recall some definitions and properties for the rth joint cumulant which was discussed in a

recent paper by Block and Fang (198S).

Definition 2. The rth joint cumulant of (X, . . . , X,) is defined by

Jjevi jevp

cum (X, . .., X) = ¥ (-1 (p-1)' [EI’I X,-]-" [El’l Xj] 3)

where the summation extends over all partitions (Vy, . . . ,Vp), p=12,.r0f {l,.r}

We state some properties which are easy to check.

(i) If any group of the X’s are independent of the remaining X’s then Cum (X, . . . , X)) = 0.

(i) For (Xy,...,X,) independent of (Yy,...,Yy) Cum (X;+Y.... X, +Y)

= Cum (Xi’ PP ,Xr) + Cum (Y], Ce ’Yl‘)'

L " v a¥®, I e S e e T I O i O I I I PSP RO T JURTE T I P T T Rt et ~\_\_-.’-.-.u_\
s " ie's fa.'.f.'. AR A ,’_ :,\'.r\' e NGO R AN A R A N RN <o
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(iii) Cum X; = EX| and Cum (X;, X;) = Cov (X, Xj).
(iv) The joint cumulant is a multilinear operator.
A useful relatonship between moments and cumulants is given in the following lemma.

Lemma 2. IfE]X;|™ < oo for any

i

EX) Xy — EX|EXp = 3 cum (X, kevy) cum (X kev,) (6)
where Y extends over all partitions (Vvy, . . . »Vp) P = 1,....m—1 of {1,..,m}.
Proof. See Lemma 1 of Block and Fang (1985).
For the characterization problem here we need the following resuit.
Lemma 3. If for all positive integers q; <r;i=12,..m such that }q; < XYr; we have

EY{" - Yo" = EY} - - EYg® then EY["...Y;» - EY[ - - - EY,"

m

=cum (Yy,...,Y, .. ., Yoo, Y @)
n Tm

Proof. By Lemma 2.

EY, - Yo -EY/' - EYZ

r . .
= 2 cum (Y;', iev))-cum (Y, IEVP) (8)
where the sum is overall partition (vy, ... ,Vp) p=1,2,...m-1 of {I... .m}.

Now by the conditions of Lemma 3 and induction we have the previous sum iy

cum (Y, ..., Y™ . (9)

Using Theorem 2.3.2. of Brillinger (1975) this turns out to be
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2, cum (Yj, jevy)-cum (Y, jevy) (10)

where the summation is over all indecomposable partitions of the set {1,...,1,...,m,...,m} wrt to parti-
tion {1,...,1}, . . ., {m,....,m} where the number of i’s is r; for i = 1,...,m. The desired result follows

by using the conditions of Lemma 3 and induction once again. Since for all proper indecomposable

partitions V;, cum (Yj, jevy) = 0.

Now we return to the nonhomogeneous Poisson processes. Some basic facts are reviewed below

for the nonhomogeneous Poisson process {N(t), t 2 0} with mean m(t) = EN(t), t 2 0.
(i) The characteristic function of N(t)
Ongy (W) = E{exp (iuN()} = exp {m(t)("~1)} 1
is analytic in the whole plzne.
(ii) The mth moments of N(t) are polynominal in Lt = m(t). More precisely we have
k S i
E{N®)} = X Six 1 (12)
i=0

where §; y is the Stirling numbers of the second kind defined by formula

1 i i 1 X
Six=- X DT s . (13)
’ i 3 J
J_
(See Riordan, 1937)

We characterize the nonhomogeneous Poisson process as follows:

Theorem 4. Let {N(t), t 2 0} be a counting process with finite moments of all orders. This process is

a nonhomogeneous Poisson process if and only if for all real t;, i=1,...,k

cum (N(ty),..N(t)) = : min ) EN(t,) . (14)

Proof. If {N(t), t 2 0} is a nonhomogeneous Poisson process, we assume t; < ty <<ty Since N(t)
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has independent increments, N(t,) is independent of N(t;) — N(t;), i = 2,...k. Thus (N(t),...,.N(t;))
is independent of (0, N(t;) — N(tl),...,N(tk) — N(ty)). Using properties of the cumulant

cum (N(tl),...,N(tk))

= cum (N(t;), N(t;) + N(t5)-N(t),...,N(t;) + N(t)-N(t;)

= cum (N(ty),...,N(t;))

+ cum(0, N(t)=N(t;),...N(t)-N(t,)

= cum(N(t;),...N(t;)) (15)
Let C;, denote the number of ways of partitioning {1,...,k} into i groups for where i > k or i < 1 we
let C;y = 0. For example when k=2 we have Cy, =0, C;5=1,Cy, =1, C3, =0 etc. Forall k,
Cix =1, Gy = 1. We also have following recurrence formula.

Cikr1 =1 Cix + G x (16)

This result follows since one can count the number of ways of partitioning {1,...,k+1} into i groups by
considering two cases. One case is obtained by setting one element aside, then partitioning the remain-
ing k elements into i groups and then replacing the single element in any of these groups. The total
number is iCi'k. The second case is obtained by counting the numbers of partitioning into i groups

where the single element forms one group and then partition the remaining k elements into i-1 groups.

This number is C;_j y.

Notice that (15) coincides with the recurrence formula for Si,k in (12) and

Sox =0=Coyx
Se= ot [
=1= Cl,k
So we get

Six = Cix - a7
Now using this fact, we can prove that cum (N(t;),...,N(t;)) = i, where © = EN(t;). We use

induction on k, the number of N(t;)’s in cum (N(t)),....N(t;)). When k=1 the result is trivial. For
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k=2, Cov (N(t;), N(t;) = Var N(t,) = Y, which is well known. For k > 2, by Lemma 2 we obtain

cum (N(t)),....N(ty)
=E {N(tl))k} ~ Y cum (N(t, ievy)--cum (N(t;), ievp)h =1 (18)

where the summation Y, extends over all partitions Vy, . . . ,Vp of {1,....k} for p = 2,....,k. Now by

the induction assumption and (12), (17)

cum (N(ty),...N(t}))
k .
= E{(N(@t))} - ¥ Ciy 1!

i—2
—chku ZC,ku =Ciy L=} (19)
i=1 i=2

Combine (15) and (19), (14) follows.

To prove the sufficiency we need to prove for any interval (t;, tz], N(tz)-N(t,) is Poisson distri-

buted and N(t) has independent increments. From (14) and E[(N(t))k] < oo, we have

cum (N(©),...,N(t)) = EN(t) (20)

Let p = EN(t) and substitute (20) in (18) (replacing t; by t), we have

E{N@®)*} =p + Z Cix W' = Z Cix W
i=2 i=1

which coincides with the moments of Poisson rv’s given in (12).

It is well known (see Y. S. Chow 1978, p. 280) that if the characteristic function of a distribution
F is analytic, the F is uniquely determined by its’ moment sequence. Since the characteristic function

of Poisson is analytic in the whole plane, we have that N(t) is Poisson with mean E(N(t)).
For increments N(t;) — N(t}) on (t; t;] we need only check
cum (N(t;) — N(tp),...,N(tp) — N(t})) = E(N(ty) = N(t})) 20

since the above argument gives that N(t;) — N(t;) is Poisson. By (14) it is easy to see that
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cum (N(t;) — N(t)),...,.N(t;) = N(t)))
= cum(N(tp), N(t;) = N(t)),...,N(T,) — N(t;))
= cum(N(ty), N(tp) — N(t)),...,N(t;) = N(ty))
= cum(N(ty), N(t5)-N(t;),...,N(ty) = N(t;))
= cum(N(ty),...,N(ty), N(ty) — N(t)))
= EN(t,) - EN(t;) = E(N(t,) - N(1,))

Here we use the multilinear property of joint cumulant.

It follows from (21) that N(t,) — N(t,) is Poisson distributed with mean E{N(t,) — N(t;)}. Con-
sequently, the characteristic function of N(t;) — N(t,_;) is analytic. We also know that, for rv's

Xy, ..., X if for each i, i = 1,.m

gk K
Z Ey EX; 2
. k!
has a positive radius of convergence as a power series in 6, then the joint distribution of

. . . r T L
(X}, - .., Xp) is determined by its cross moment EX;', . . . , X' where r; are nonnegative integers

(see Billingsley, 1979, p. 351) for Poisson marginal (22) hold. To prove independent increments we

only need to check

EX]',...,X:"=EX{,... ,EX>" 23)

for all rj, i=1,...m where X; = N(t;) — N(t;_;) and where (t,_; t], i = l...m are disjoint intervals on

R+
We check (23) by using Lemma 3 and induction. For m=1, its’ trivial. For m=2,r =1, = 1,

Cov (X}, X3) = Cov (N(t;) — N(tg), N(t;) = N(t}))
= Cov (N(t}) N(t3)) — Cov (N(tp), N(tp))
— Cov (N(t;), N(ty)) + Cov (N(ty), N(t))
= EN(t;) — EN(ty) — EN(t)) + EN(t)) = 0

So EX; X, = EX| EX;. Similarly, we have
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! which means increments on disjoint intervals are uncorrelated.

By (14), we also have
cum (N(t;) = N(tp),....N(ty) = N(t;; 1)) =0 (25)
which means increments on disjoint intervals have zero joint cumulant. More generally, ,
.._JL I n
cum(Xl,...,Xl,...,X,,],‘.Sn.l.Xm) §
’
= 2™ {EN(t,) - EN(t))}
X ¥
+ | 27 = 2" {EN(ty) - EN(t)} =0 (26) !
We do a simple case as example. Assume ty <t} < t,, :
cum (Xl, Xl, Xz)
.= cum (N(t;) = N(tp), N(t;) = N(tp), (N(t) — N(t}))
= cum (N(tl)9 N(tl), N(‘Z) = cum (N(tl)’ N(t])v N(t]))
= cum (N(t}), (N(tp), N(t3)) + cum (N(t), N(tg), N(t}))
- cum (N(tg), N(t,), N(tz)) + cum (N(tg), N(t,), N(t,)) k
+ cum (N(tg), N(tg), N(tp) — cum (N(1), Ntp), (N(t})) p
= {EN(t)) — EN(t))} + 3 {EN(tg) - EN(tg)} = 0 .
-
From (26), Lemma 3 and induction (23) follows for all r,, which imply independent increments tor :
N(t). This completes the proof. i
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As a by-product we have the following result.
Theorem 5. If the rv X satisfies E| X |™ < oo for all n, the X is Poisson distributed if and only if

cum (X,...,X) = EX for all m.
"\E—!

The characterization here provides another example of independence characterized via uncorrela-

tion. Test methods for a counting process being Poisson can be constructed by using this result.
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